("green pigments") could be formed by such a transfer mechanism. ${ }^{18}$

Registry No. 1a, 83219-57-2; 1b, 79197-95-8; 1c, 70936-44-6; 2a, 83219-58-3; 2b, 83219-60-7; 2c, 83219-61-8; 3a, 83219-59-4; 3b, 51552-53-5; 3c, 81856-91-9; $\mathrm{Fe}^{111}(\mathrm{TPP})(\mathrm{Cl}), 16456-81-8$.

[^0]
Osmium(IV)-Mediated Oxidative Dehydrogenation of Coordinated Amines: Crystal and Molecular Structures of cis-1,2-Ethanediaminebis(1,2-ethanediaminato(1-))osmium(IV) Dibromide

Peter A. Lay, ${ }^{1}$ Alan M. Sargeson, ${ }^{* 1}$ Brian W. Skelton, ${ }^{2}$ and Allan H. White ${ }^{2}$

The Research School of Chemistry
The Australian National University Canberra, ACT 2600, Australia and The School of Chemistry The University of Western Australia Nedlands, WA 6009, Australia

Received May 27, 1982

The $\mathrm{Os}(\mathrm{IV})$ complexes $\left[\mathrm{Os}(\mathrm{en})(\mathrm{en}-\mathrm{H})_{2}\right]^{2+}$ and $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{en}-\right.$ $\mathrm{H}){ }^{3+}$ were originally prepared by Dwyer and Hogarth ${ }^{3,4}$ and formulated as diamagnetic Os (IV) 1,2-ethanediamine complexes deprotonated at the N centers. An alternative interpretation would have been diamagnetic osmium(II) imine complexes. This reinvestigation stemmed from the recognition by Basolo et al. ${ }^{5}$ that the complex formulated ${ }^{6}$ as $\left[\mathrm{Ru}(\mathrm{en}-\mathrm{H})_{2}(\mathrm{en}-2 \mathrm{H})\right]^{2+}$ was in fact the $\mathrm{Ru}(\mathrm{II})$ complex $\left[\mathrm{Ru}(\mathrm{en})_{2} \text { (diim) }\right]^{2+}$. An X-ray crystallographic study of the complex $\left[\mathrm{Os}(\right.$ en $\left.)(\text { en- } \mathrm{H})_{2}\right] \mathrm{Br}_{2}{ }^{7}$ (Figure 1) has now substantiated the original interpretation. ${ }^{4}$ The complex cation has an octahedrally distorted $\mathrm{Os}^{\mathrm{IV}} \mathrm{N}_{6}$ core, with two mononegative aminate ions (on different ligands) occupying a cis configuration. The short $\mathrm{Os}-\mathrm{N}$ (aminate) bonds ($1.90 \AA$), as compared to the $\mathrm{Os}-\mathrm{N}$ (amine) bonds, $2.11 \AA$ (cis) and $2.19 \AA$ (trans), are attributed to donation of electron density from filled p_{z} orbitals of the ligands to empty d orbitals on Os(IV), giving effectively two $\mathrm{Os}-\mathrm{N}$ double bonds. The conclusion is supported by the increase in angle between the double bonds (110°) and the consequent narrowed $\mathrm{N}-\mathrm{Os}-\mathrm{N}$ angle $\left(76^{\circ}\right)$ for the en chelate trans to the cis

[^1]Table I. Atomic Coordinates for cis-[Os(en)(en-H) $\left.{ }_{2}\right] \mathrm{Br}_{2}$

atom	x	y	z
Cation			
Os	$0.00000(-)$	0.21515 (6)	$0.25000(-)$
Axial Ligand			
N	-0.0950 (5)	-0.0134 (9)	0.1973 (6)
$\mathrm{H}_{\mathrm{N}}(\mathrm{A})$	-0.132 (8)	-0.017 (15)	0.106 (12)
$\mathrm{H}_{\mathrm{N}}(\mathrm{B})$	-0.143 (11)	0.039 (24)	0.200 (16)
$\mathrm{C}^{\text {N }}$	-0.0407 (6)	-0.1772 (11)	0.2568 (9)
H_{C} (A)	-0.079 (6)	-0.284 (12)	0.221 (9)
$\mathrm{H}_{C}(\mathrm{~B})$	-0.005 (7)	-0.187 (14)	0.369 (10)
Other Ligand			
N	0.1120 (5)	0.3588 (10)	0.3319 (7)
H_{N}	0.146 (5)	0.372 (10)	0.310 (7)
C	0.1601 (6)	0.4129 (11)	0.4687 (8)
$\mathrm{H}_{\mathrm{C}}(\mathrm{A})$	0.218 (6)	0.329 (13)	0.529 (9)
$\mathrm{H}_{C}(\mathrm{~B})$	0.180 (7)	0.543 (15)	0.467 (10)
C^{\prime}	0.0866 (6)	0.4007 (12)	0.4947 (8)
$\mathrm{H}_{\mathrm{C}^{\prime}}(\mathrm{A})$	0.121 (6)	0.411 (12)	0.579 (8)
$\mathrm{H}_{\mathrm{C}^{\prime}}(\mathrm{B})$	0.033 (6)	0.507 (12)	0.449 (9)
N^{\prime}	0.0324 (5)	0.2335 (10)	0.4371 (6)
$\mathrm{H}_{\mathrm{N}}{ }^{\prime}(\mathrm{A})$	0.072 (7)	0.138 (16)	0.489 (10)
$\mathrm{H}_{\mathrm{N}^{\prime}}(\mathrm{B})$	-0.012 (6)	0.224 (11)	0.448 (8)
Anion			
Br	0.18660 (6)	0.11325 (13)	0.12672 (8)

Table II. Cation Geometry ${ }^{\boldsymbol{a}}$

(a) Osmium Coordination Environment ${ }^{b}$				
	$r_{\text {Os-N }}$ N	$\mathrm{N}^{\prime} \quad N_{\text {ax }}$	N	N^{\prime}
N_{ax}	2.194 (7) 161.7 (3)	92.5 (3) 76.0 (3)	87.4 (3)	93.5 (3)
N	1.896 (7)	81.0 (4) 87.4 (3)	110.0 (3)	94.6 (3)
N^{\prime}	2.113 (9)	93.5 (3)	94.6 (3)	172.5 (3)
(b) Ligand Geometries				
ligand		"axial"	"equatorial"	
N-C Distances (\AA) 1.48 (1)				
$\mathrm{N}-\mathrm{C}$$\mathrm{N}^{\prime}-\mathrm{C}^{\prime}$		1.52 (2)	1.48 (1)	
$\mathrm{C}-\mathrm{C}(1)$			1.49 (2)	
Angles (deg)				
	Os-N-C	112.3 (5)	118.6 (7)	
	$\mathrm{Os}-\mathrm{N}^{\prime}-\mathrm{C}^{\prime}$	106.8 (9)	106.3 (7)	
	$\mathrm{N}-\mathrm{C}-\mathrm{C}(1)$		107.2 (6)	
	$\mathrm{N}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}$		108.0 (9)	

${ }^{a}$ Atoms generated by the 2-fold rotor are italicized. ${ }^{b_{r}}$ is the metal ligand distances (\AA). Other entries in the matrix are the angles subtended at the osmium by the relevant atoms.
aminate ions, together with the location and refinement in $(x, y$, z) of all hydrogen atoms (Tables I and II).

Stable Os(IV) ammine complexes are rare, ${ }^{8}$ and the stabilization in this instance apparently arises from the donation of electron density to the $\mathrm{Os}(\mathrm{IV})$ center. The effect is seen dramatically in the redox potentials for the singly $(+0.29 \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{AgCl} /$ saturated LiCl (acetone) electrode in acetone) and double deprotonated ($\sim-1.2 \mathrm{~V}$) ions. The difference of $>1 \mathrm{~V}$ cannot be attributed to just the change in charge. Comparable effects for Co (III) amine complexes lead to redox potential differences in the range $0.1-0.2$ V. ${ }^{9}$ Similar large stabilizations of M(IV) species have been noted by deprotonation of amines coordinated to $\mathrm{Pt}(\mathrm{IV}),{ }^{9}$ but here the ability of $\mathrm{d}^{6} \mathrm{Pt}$ (IV) to accept electrons from the ligand is more questionable and needs to be observed structurally. The large effects are consistent, however, with the sets of lone pairs of electrons donating charge to the $\mathrm{Os}(\mathrm{IV})$ ion in a very substantial

[^2]

Figure 1. Projection of $\left[\mathrm{Os}(\mathrm{en})(\mathrm{en}-\mathrm{H})_{2}\right] \mathrm{Br}_{2}$ showing (a) the unit cell contents and (b) the cation down and normal to the crystallographic b axis, respectively. Thermal ellipsoids are shown at the 20% probability level, and in (b) the hydrogen atoms have an arbitrary radius of $0.1 \AA$.

Scheme I

manner. Using the magnitude of these effects and the failure to observe oxidation of $\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{3+}$ to $\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{4+}$ in aqueous solution, we estimate the $\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{4+13+}$ potential to be $\gtrsim+2 \mathrm{~V}$. This is also consistent with an observation of an oxidation wave at $\sim+2$ V vs. $\mathrm{Ag} / \mathrm{AgCl} / 0.1 \mathrm{M} \mathrm{LiCl}$ acetone electrode in acetone or acetonitrile (Au electrode).

The amine protons on the $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{en}-\mathrm{H})\right] \mathrm{Br}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ complex ${ }^{10}$ are acidic ($\mathrm{p} K_{\mathrm{a}} 5.8$) ${ }^{4}$ and are not observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{D}_{2} \mathrm{O}$ or DCl . Also the ${ }^{13} \mathrm{C}$ NMR spectra of the $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{en}-\mathrm{H})\right]^{3+}$ and $\left[\mathrm{Os}(\mathrm{en})(\mathrm{en}-\mathrm{H})_{2}\right]^{2+}$ ions ${ }^{7}{ }^{10}$ showed only one signal, which is consistent with equivalent carbon atoms on the NMR time scale and rapid exchange of the protons among the nitrogen sites.

Under N_{2}, the $\mathrm{Os}(\mathrm{IV})$ complexes were observed to undergo spontaneous oxidative dehydrogenation of the ligand to form an Os(II) imine species ($\epsilon_{400} \max _{\sim} \sim 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). The reaction was followed spectrophotometrically at 400 nm and pH 7.0 $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}{ }^{11}{ }^{11} 10^{-4} \mathrm{M}\left[\mathrm{Os}(\mathrm{en})(\mathrm{en}-\mathrm{H})_{2}\right] \mathrm{Br}_{2}, \mu 0.20 \mathrm{M}\right.$, $\left(\mathrm{NaCF}_{3} \mathrm{SO}_{3}\right), 25^{\circ} \mathrm{C}$) and was first order ($k_{\text {obsd }} \sim 10^{-5} \mathrm{~s}^{-1}$). In more concentrated solutions ($10^{-2} \rightarrow 10^{-1} \mathrm{M}$), with use of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy under an N_{2} atmosphere, the major imine species obtained was the diimine $\left[\mathrm{Os}(\mathrm{en})_{2} \text { (diim) }\right]^{2+}$ ion. ${ }^{12}$ In the presence of O_{2}, the $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{im})\right]^{2+}$ complex was oxidized to $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{diim})\right]^{2+}$ over ~ 1 day. The latter complex was more slowly oxidized over ~ 1 week to the tetraimine species, which was crystallized from aqueous HCl as $\left[\mathrm{Os}(\mathrm{en})(\mathrm{diim})_{2}\right] \mathrm{Cl}_{2}$. $\mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{13}$

[^3]
Scheme II

a $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{en}-\mathrm{H})\right]^{3+}+\mathrm{OH}^{-} \rightleftharpoons\left[\mathrm{Os}(\mathrm{en})(\mathrm{en}-\mathrm{H})_{2}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$

This chemistry is summarized in the reaction Scheme I, and the mechanism for the dehydrogenation is outlined in Scheme II. $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{en}-\mathrm{H})\right]^{3+}$ is stable in acid, although it is slowly reduced to $\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{3+}$ in concentrated HBr solutions, and the [Os (en) $\left.(\text { en }-\mathrm{H})_{2}\right]^{2+}$ ion is stabilized (in the absence of O_{2}) as the pH increases. Optimum spontaneous oxidation of the ligand to the monoimine group at low ($10^{-4} \mathrm{M}$) concentrations of complex appears to occur in the pH region of 6-7. Moreover, the imine CH protons do not exchange with deuterium when the oxidation is performed in $\mathrm{D}_{2} \mathrm{O}$, which indicates that the removal of the methylene proton and electron transfer are concerted. A combination of the increased acidity of the methylene protons and increased oxidizing power of the Os(IV) center in [Os(en) $)_{2}$ (en$\mathrm{H})]^{3+}$ in comparison to $\left[\mathrm{Os}(\mathrm{en})(\mathrm{en}-\mathrm{H})_{2}\right]^{2+}$ is the driving force to the oxidation and explains the retardation by acid and base in Scheme IIa.

In the higher concentrations of Os employed in NMR experiments, it appears that the initially formed $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{im})\right]^{2+}$ undergoes a cross reaction with $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{en}-\mathrm{H})\right]^{3+}$ to form [Os $\left.(\mathrm{en})_{2}(\mathrm{im})\right]^{3+}$, which disproportionates to $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{im})\right]^{2+}$ and $\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{diim})\right]^{2+}$. This explains the observation of $\left[\mathrm{Os}(\mathrm{en})_{2^{-}}\right.$ (diim) ${ }^{2+}$ in the NMR experiments in contrast to the more dilute solutions. (Scheme IIb).
These results implicate the $\mathrm{M}(\mathrm{IV})$ oxidation state as an intermediate in the documented oxidative dehydrogenations of

[^4]ligands coordinated to Fe^{14} and $\mathrm{Ru} .{ }^{5,15}$ It is becoming apparent that such intermediates may arise from base-catalyzed disproportionation of Ru (III) and Os (III) amine complexes to form M(II) and M(IV) species in other reactions. ${ }^{16,17}$ Of particular relevance is the oxidative dehydrogenation of the 2-(1-hydroxyethyl)pyridine ligand (hepy) in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\right.$ (hepy) ${ }^{3+}$ to form the ketone analogue. ${ }^{17}$ This has been shown to occur by base-catalyzed disproportionation of the Ru (III) complex to Ru (II) and deprotonated $\mathrm{Ru}(\mathrm{IV})$ species. The latter undergoes oxidative dehydrogenation of the ligand. Kinetic experiments involving the oxidative dehydrogenation of the 2 -(aminomethyl)pyridine ligand (ampy) in $\left[\mathrm{Ru}(\mathrm{bpy})_{2} \text { (ampy) }\right]^{3+}$ have led to similar conclusions, i.e., an initial base-catalyzed disproportionation of Ru (III) to $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Ru}(\mathrm{IV}) .{ }^{18}$ Preliminary work on the oxidative dehydrogenation of the 1,2 -ethanediamine ligands of $\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{3+}$ has led us to believe that a similar mechanism is operating here. ${ }^{19}$
The stabilization of the deprotonated Os(IV) complexes clearly arises from the donation of charge from the ligand to the metal. This is evident from the crystal structure and redox properties. It leads to bond orders greater than 1 for the $\mathrm{Os}-\mathrm{N}$ bonds, and the unsaturation apparently increases the acidities of the adjacent methylene protons. There is a crude analogy with imine or carbonyl chemistry where similar increases in acidities are well-known. These effects could be expected to increase in the order $\mathrm{Fe} \ll \mathrm{Ru}<\mathrm{Os}$, since this is the order of radial extension of the d orbitals. ${ }^{20}$ Thus the M(IV) oxidation state would be less accessible (i.e., stronger oxidant) for Ru and more particularly Fe, thereby being much shorter lived and not generally observed as an intermediate in oxidative dehydrogenation processes. However, the importance of the relative energies of the empty d orbitals of the metal and the filled aminate porbitals needs also to be considered, and we are not certain as to which effect is most important.

The changes in stability of the II and III oxidation states of the Fe group on addition of imines into the coordination sphere has been ascribed to a similar phenomenon, whereby electron density in filled d orbitals on the metal is donated to empty π^{*} orbitals of the ligand. The degree of stabilization of the M(II) state again increases in the order $\mathrm{Fe} \ll \mathrm{Ru}<\mathrm{Os}{ }^{20}$ This is dramatically shown by the potential of the $2+/ 3+$ couple of $\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{3+/ 2+}(-0.52 \mathrm{~V})$ (prepared by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4},{ }^{4} \mathrm{EtOH} /$ en or concentrated HBr reduction of the $\mathrm{Os}(\mathrm{IV})$ complexes), in comparison to the $\left[\mathrm{Os}(\mathrm{en})(\mathrm{diim})_{2}\right]^{3+/ 2+}(+0.69 \mathrm{~V})$ and the trans$\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{Me}_{2}(\mathrm{diim})_{2}\right]^{3+/ 2+}\right.$ couples $+0.77 \mathrm{~V}^{21}$ vs. the standard hydrogen electrode

Crystal data are as follows: $\mathrm{C}_{6} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Os} ; \mathrm{M}_{\mathrm{r}} 530.3$; monoclinic; space group $C 2 / c$ ($C_{2 h}^{6}$, No. 15); $a=17.256$ (8), b $=7.566$ (3), $c=12.802$ (5) $\AA ; \beta=126.71$ (2) ${ }^{\circ}, U=1339$ (1) $\AA^{3} ; D_{\mathrm{c}}(Z=4)=2.63 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu_{\mathrm{M} 0}=150 \mathrm{~cm}^{-1}, T=295 \mathrm{~K}, F(000)$ $=992$. A unique data set was measured within the limit $2 \theta_{\text {max }}$ $=55^{\circ}$, yielding 1951 independent reflections. 1617 of these with

[^5]$I>3 \sigma(I)$ were used in the full-matrix least-squares refinement after analytical absorption correction. Non-hydrogen atoms were refined in ($x, y, z, U_{i j}$) and hydrogen atoms in (x, y, z, U). At convergence R, R^{\prime} were 0.039 and 0.047 , reflection weights being $\left(\sigma^{2}\left(F_{0}\right)+0.0005\left(F_{0}\right)^{2}\right)^{-1}$. Neutral atom scattering factors were used, those for the non-hydrogen atoms being corrected for anomalous dispersion $\left(f^{\prime} f^{\prime \prime}\right)^{22}$ Computation was carried out by using the X-RAY 76 program system ${ }^{23}$ implemented by S. R. Hall on a Perkin-Elmer 3240 computer.

Acknowledgment. We are grateful for assistance from the ANU Microanalytical Section and the RSC NMR Service.
Registry No. $\left[\mathrm{Os}^{[\mathrm{VV}}(\mathrm{en}-\mathrm{H})_{2}(\mathrm{en})\right]^{2+}, 16923-53-8 ;\left[\mathrm{Ss}^{\mathrm{IV}}(\mathrm{en}-\mathrm{H})(\mathrm{en})_{2}\right]^{3+}$, 83095-58-3; [Os(en) 2 (im) $]^{2+}, 83095-59-4 ;\left[\mathrm{Os}(\mathrm{en})_{2}(\mathrm{diim})\right]^{++}, 83095-60$ 7; $\left[\mathrm{Os}(\mathrm{en})(\mathrm{diim})_{2}\right]^{2+}, 83095-61-8 ;\left[\mathrm{Os}(\mathrm{en})_{3}\right]^{3+}, 46138-85-6 ;\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Os}-$ Br_{6}, 24598-62-7.

Supplementary Material Available: Listing of structure factor amplitudes (observed and calculated) and thermal parameters (1 page). Ordering information is given on any current masthead page.

[^6]
Total Synthesis of the C19-C29 Aliphatic Segment of $(+)$-Rifamycin \mathbf{S}^{1}

S. Hanessian,* J.-R. Pougny, and I. K. Boessenkool

> Department of Chemistry, University of Montreal Montreal, Quëbec, Canada H3C 3VI Received May 11, 1982

Among the landmark achievements in natural product synthesis in 1980 was Kishi's conquest of the rifamycin S structure. ${ }^{2}$ In considering synthetic approaches ${ }^{3}$ to this formidable target, ${ }^{4}$ one is faced with several challenging problems, not the least of which is the construction of the sequence of alternating methyl and hydroxyl groups situated in the C19-C29 aliphatic segment and encompassing eight contiguous asymmetric centers. We report on the assembly of the aliphatic segment of rifamycin S based on a strategy that recognizes hidden carbohydrate-type symmetry ${ }^{5}$ as illustrated in Scheme I. Bond disconnection at C24-C25 generates two segments representing $\mathrm{C} 19-\mathrm{C} 24$ and $\mathrm{C} 25-\mathrm{C} 29$, which can be related to two "chiral templates"s derived from D-glucose and designated as precursors A and B.

Precursor A. The synthesis of precursor A as shown in Scheme II starts with the readily available and crystalline epoxide $1,{ }^{6}$ which

[^7]
Scheme I

Scheme II^{a}

${ }^{a} \mathrm{Key}:(\mathrm{a}) \mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMAP, 91%; (b) 50% aqueous AcOH ; (c) diphenyl-tert-butylsilyl chloride pyridine, $0^{\circ} \mathrm{C}, 18 \mathrm{~h}, 88 \%$ (two steps); (d) $\mathrm{COCl}_{2}, \mathrm{Me}_{2} \mathrm{SO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-60$ to $25^{\circ} \mathrm{C}$, quantitative; (e) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, toluene, then $\mathrm{KCN}, \mathrm{MeOH}, 88 \%$; (f) $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}$, dioxane, then $\mathrm{BnBr}, \mathrm{THF}, \mathrm{KH}, 92 \%$; (g) flash chromatography, EtOAc-hexanes $15: 85$; (h) n-Bu ${ }_{4} \mathrm{NF}$, THF, 76%; (d) 86%; (i) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, toluene, 87.5%; (j) $5 \% \mathrm{Rh}^{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{H}_{2}$, toluene, quan titative; (k) 25% aqueous $\mathrm{AcOH}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then NaBH_{4}, EtOH, 86%; (l) TrCl , pyridine, $65^{\circ} \mathrm{C}, 20 \mathrm{~h}, 92 \%$; (m) pyridinium chlorochromate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4-\AA$ sieves; see: Herscovici, J.; Antonaki , K. J. Chem. Soc. Chem. Commun. 1980561.
was converted into 2 by methodology developed in our assembly of the erythronolide A secoacid skeleton. ${ }^{7,8}$ Elaboration of the

[^8]
[^0]: (18) So far, most N-alkylporphyrins found in vivo as "green pigments" in the liver were derived from the oxidative activation of exogenous compounds containing an easily accessible double or triple carbon-carbon bond. ${ }^{19}$
 (19) (a) Ortiz de Montellano, R. E.; Kunze, K. L.; Mico, B. A. Mol. Pharmacol. 1980, 18, 602. (b) Ortiz de Montellano, R. E.; Mico, B. A. Ibid. 1980, 18, 128. (c) Ortiz de Montallano, R. E.; Beilan, H. S.; Kunze, K. L.; Mico, B. A. J. Biol. Chem. 1981, 256, 4395.
 (20) Note Added in Proof: During the submission of this paper, a paper appeared describing the transfer of the phenyl group of $\mathrm{Fe}(\mathrm{TPP})(\mathrm{Ph})$ from iron to nitrogen upon treatment of this complex by O_{2} and acids: Ortiz de Montellano, R. E.; Kunze, K. L.; Augusto, O. J. Am. Chem. Soc. 1982, 104, 3545.

[^1]: (1) The Australian National University.
 (2) The University of Western Australia.
 (3) Ligand abbreviations: en $=1,2$-ethanediamine; en- $\mathrm{H}=1,2$-ethane-diaminate(1-); en-2H = 1,2-ethanediaminate(2-); im = 2-aminoethanimine; diim $=$ ethanediimine; Me_{2} diim $=2,3$-butanediimine; bpy $=2,2^{\prime}$-dipyridine; ampy $=2$-(aminomethyl)pyridine; impy $=2$-(iminomethyl)pyridine; hepy $=$ 2-(1-hydroxyethyl)pyridine.
 (4) Dwyer, F. P.; Hogarth, J. W. J. Am. Chem. Soc. 1953, 75, 1008-1009; 1955, 77, 6152-6154.
 (5) Lane, B. C.; Lester, J. E.; Basolo, F. J. Chem. Soc., Chem. Commun. 1971, 1618-1619.
 (6) Elsbernd, H.; Beattie, J. K. J. Chem. Soc. A 1970, 2598-2600.
 (7) Anal. for $\mathrm{C}_{6} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Os}, \mathrm{C}, \mathrm{H}, \mathrm{Br}, \mathrm{N} .{ }^{24}{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) -23.8 ppm vs. dioxane as internal reference.

[^2]: (8) Stable complexes of $\mathrm{Os}(\mathrm{IV})$ with an $\mathrm{N}_{4} \mathrm{X}_{2}$ chromophore have been isolated previously, but $\left[\mathrm{Os}^{1 v}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{n+}$ and $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+}$ were reported to be very unstable. Buhr, J. D.; Winkler, J. R.; Taube, H. Inorg. Chem. 1980, 19, 2416-2425.
 (9) Lay, P. A. Ph.D. Thesis, Australian National University, Aug 1981.

[^3]: (10) Anal. for $\mathrm{C}_{6} \mathrm{H}_{29} \mathrm{Br}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Os}, \mathrm{C}, \mathrm{H}, \mathrm{N} .{ }^{24}{ }^{13} \mathrm{C}$ NMR (0.1 M DCl$)-29.9$ ppm.
 (11) Perrin, D. D. Aust. J. Chem. 1963, 16, 572-578.
 (12) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.57(\mathrm{CH}=\mathrm{NH}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)+94.9$ (diim), $-18.1,-18.3(\mathrm{en}) \mathrm{ppm}$; vis $/ \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right) \epsilon_{\max }{ }^{20} \sim 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

[^4]: (13) Anal. for $\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{OOs}, \mathrm{C}, \mathrm{H}, \mathrm{Cl} .{ }^{24}{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 2.61,2.93$ (br, 2, CH_{2}) ~ 4.8 (br, NH_{2}, partially obscured by HDO peak), 6.41 (br, 1 , $\left.\mathrm{NH}_{2}\right), 8.51,8.58(\mathrm{~s}, 2, \mathrm{CH}=\mathrm{NH}$, weak ABX coupling pattern), 11.65, 14.07 ($\mathrm{br}, 2, \mathrm{CH}=\mathrm{N} H$), two CH_{2} and two NH_{2} peaks due to different chemical shifts of axial and equatorial protons; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)+102.8$ (trans, $\mathrm{CH}=\mathrm{NH}$) ; +97.7 (cis, $\mathrm{CH}=\mathrm{NH}),-18.6$ (en); $\mathrm{IR}(\mathrm{KBr}$ disc) 1478 (vs), 1783 (vs) $\mathrm{cm}^{-1}(\mathrm{CH}=\mathrm{NH})$; vis/UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \epsilon_{380^{\max }} 4500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}(\mathrm{sh}), \epsilon_{423}{ }^{\max }$ $14100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \epsilon_{500}{ }^{\max } 6000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}(\mathrm{sh}), \epsilon_{653}{ }^{\max } 75 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

[^5]: (14) Goedken, V. L. J. Chem. Soc., Chem. Commun. 1972, 207-208. Christoph, G. G.; Goedken, V. L. J. Am. Chem. Soc. 1973, 95, 3869-3875. Dabrowiak, J. C.; Busch, D. H. Inorg. Chem. 1975, 14, 1881-1888. Dabrowiak, J. C.; Lovecchio, F. V.; Goedken, V. L. Busch, D. H. J. Am. Chem. Soc. 1972, 94, 5502-5504. Goedken, V. L.; Busch, D. H. Ibid. 1972, 94, 7355-7363. Krumholz, P. Ibid. 1953, 75, 2163-2166.
 (15) Mahoney, D. F.; Beattie, J. K. Inorg. Chem. 1973, 12, 2561-2565. Brown, G. M.; Weaver, T. R.; Keene, F. R.; Meyer, T. J. Ibid. 1976, I5, 190-196. McWhinnie, W. R.; Miller, J. D.; Watts, J. B.; Waddan, D. Y. Inorg. Chim. Acta 1973, 7, 461-466. Diamond, S. E.; Tom, G. M.; Taube, H. J. Am. Chem. Soc. 1975, 97, 2661-2664. Keene, F. R.; Salmon, D. J.; Meyer, T. J. Ibid. 1976, 98, 1884-1889. Geungerich, C. P.; Schug, K. Ibid. 1977, 99, 3298-3302. Alvarez, V. E.; Allen, R. G.; Matsubara, T.; Ford, P. C. Ibid. 1974, 96, 7686-7692. Warren, L. F. Inorg. Chem. 1977, 16, 2814-2819.
 (16) Rudd, DeF. P.; Taube, H. Inorg. Chem. 1971, 10, 1543-1544. Buhr, J. D.; Taube, H. Ibid. 1979, 18, 2208-2212. Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 5577-5579.
 (17) Tovrog, B. S.; Diamond, S. E.; Mares, F. J. Am. Chem. Soc. 1979, 101, 5067-5069
 (18) Ridd, M. J.; Keene, F. R. J. Am. Chem. Soc. 1981, 103, 5733-5740.
 (19) Lay, P. A.; Sargeson, A. M., to be submitted for publication.
 (20) Taube, H. Surv. Prog. Chem. 1973, 6, 1-46.
 (21) Evans, I. P.; Everett, G. W.; Sargeson, A. M. J. Am. Chem. Soc. 1976, 98,8041 -8046.

[^6]: (22) "International Tables for X-ray Crystallography"; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, 1974; Vol. 4.
 (23) "The X-RAY System-Version of March, 1976", Technical Report TR-446, Computer Science Center, University of Maryland, Stewart, J. M., Ed.
 (24) Conventional $\mathrm{C}, \mathrm{H}, \mathrm{N}$ analyses using an automatic analyzer gave consistently low \mathbf{N} values for these osmium complexes. It is necessary to use the Kirsten-Dumas method in order to obtain satisfactory N analyses.

[^7]: (1) Portions of this work were presented at the Euchem Conference on "Uses of Carbohydrates as Starting Materials for Organic Synthesis", Belle-Ile-en-Mer, France, June 3-6, 1979; Euchem Stereochemistry Conference, Bürgenstock, Switzerland, April 27-May 3, 1980; 28th IUPAC Congress, Vancouver, Canada, August 16-21, 1981, OR 088.
 (2) Nagaoka, H.; Rutsch, W.; Schmid, G.; Johnson, M. R.; Kishi, Y. J. Am. Chem. Soc. 1980, 102, 7962-7965. Iio, H., Nagaoka, H.; Kishi, Y. Ibid. 1980, 102, 7965-7967. See also ref 22.
 (3) See for example: (a) Corey, E. J.; Hase, T. Tetrahedron Lett. 1980, 335-338. (b) Nakata, M.; Takao, H.; Ikeyama, Y.; Sakai, T.; Tatsuta, K.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1981, 54, 1749-1756 and previous papers.
 (4) For a recent review, see: Wehrli, W. Top. Curr. Chem. 1977, 72, 21-49 and references cited therein. See also: Prelog, V.; Oppolzer, W. Helv.
 Chim. Acta 1973, 56, 2279-2315.
 (5) Hanessian, S. Acc. Chem. Res. 1979, 12, 159-165.
 (6) Wiggins, L. F. Methods Carbohydr. Chem. 1963, 2, 188-191.

[^8]: (7) Hanessian, S.; Rancourt, G.; Guindon, Y. Can. J. Chem. 1978, 56, 1843-1846. Hanessian, S.; Rancourt, G. Ibid. 1977, 55, 1111-1113. Hanessian, S.; Rancourt, G. Pure Appl. Chem. 1977, 49, 1201-1214.
 (8) Satisfactory elemental analyses and spectroscopic data were obtained for new compounds reported herein. Optical rotations were measured in chloroform at concentrations of 1%. NMR spectra were recorded on Brucker 90 MHz and 400 MHz spectrometers. Mass spectra were recorded on an MM-1212 low-resolution (chemical ionization) and an MS-902 high-resolution (electron impact) instruments.

